Pourquoi la quadrature du cercle est-elle impossible ? Comment la variable d’un polynôme peut-elle prendre corps en la racine du dit polynôme ? Qu’est ce que la fonction de Möbius, l’indicatrice d’Euler, un groupe quasi cyclique ? Que sont les points de Lemoine et de Torricelli ? Comment représenter algébriquement une rotation de l’Espace ? Comment symétriser une loi non commutative ? Que signifie faire un passage au quotient ? Pourquoi le théorème de Zorn est-il si précieux ?
A toutes ces questions cet ouvrage essaie de donner une réponse rapide et claire, dans le même esprit que le précédent manuel d’Analyse de la collection : la convergence vue par les problèmes.
L’idée force est en effet de dégager les grandes lignes de la théorie Algébrique, sans se perdre dans les détails d’un cours traditionnel, et d’agrémenter l’étude d’exemples essentiels et de problèmes pratiques illustrant les démarches fondamentales. Les résultats annexes, déduits des principes de base, sont listés dans une partie 'résumé de cours’, facilement consultable au gré des besoins.
La structure souple adoptée ouvre donc le livre à un vaste public : élèves de classes préparatoires, étudiants de premier cycle d’Université, élèves professeurs et enseignants confirmés désireux de se ressourcer ou d’élargir leur vision de la mathématique.
Le lecteur y trouvera, en effet, une synthèse claire des principes algébriques de base et dans la partie problèmes, un terrain d’entraînement idéal pour se préparer aux examens et concours, les sujets en grand nombre, classiques ou originaux, couvrant un secteur étendu de l’algèbre et de la géométrie de premier cycle.
|
|
Titre Algèbre
Format Broché 294 p. 14,5x20,5
Prix 32 €
Du même auteur Algèbre Les Fonctions Spéciales vues par les problèmes
Chez le même éditeur
|